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Abstract—1In order to unmix the hyperspectral imagery (HSI)
with better performance, this letter proposes a correntropy-
based autoencoder-like nonnegative matrix factorization (NMF)
(CANMF) with total variation (CANMF-TV) method. NMF is
extensively applied to unmix the mixed pixels. However, it only
reconstructs the original data from the abundances in endmem-
ber space. To directly project the original data space into the end-
member space, and then achieve the abundance matrix, we first
exploit an autoencoder-like NMF for hyperspectral unmixing,
which integrates both decoder and encoder. Considering that
HSI is typically degraded by noise, the correntropy-induced
metric (CIM) is introduced to construct a CANMF model.
In addition, TV regularizer is imposed into the CANMF model
so as to preserve the spatial-contextual information by promoting
the piecewise smoothness of abundances. Finally, a series of
experiments are conducted on both synthetic and real data sets,
demonstrating the effectiveness of the proposed CANMF-TV
method over comparison.

Index Terms— Correntropy-induced metric, hyperspectral
unmixing, nonnegative matrix factorization, total variation.

I. INTRODUCTION

ONNEGATIVE matrix factorization (NMF) is a
promising technique that has the capacity of extracting
effective low-dimensional feature representation. It approxi-
mates a nonnegative matrix by the product of two nonnegative
ones, i.e., one basis matrix and one coefficient matrix. As a
consequence, the results are yielded with clear physical inter-
pretation. To this end, NMF has drawn considerable attention
in a variety of domains, including, but not limited to, hyper-
spectral unmixing [1], clustering [2], and face recognition [3].
In particular, NMF has been successfully applied to
hyperspectral unmixing based on linear mixture model
(LMM). Hyperspectral unmixing aims to obtain a collec-
tion of constituent materials (called endmembers) along with
their proportions (called abundances) from a hyperspectral
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imagery (HSI) with mixed pixels [4], thereby benefiting sub-
sequent applications. LMM assumes that each pixel spec-
trum is a linear combination of endmember signatures and
their associated abundances [5]. Based on LMM, there are
numerous unmixing approaches, such as vertex component
analysis (VCA) [6], sparse unmixing by variable splitting and
augmented Lagrangian (SUnSAL) [7], and minimum volume
simplex analysis (MVSA) [8]. In contrast, the NMF-based
methods extract the spectra of endmembers with their abun-
dances simultaneously from the decomposed matrices directly.
By making use of prior knowledge, additional constraints are
incorporated into NMF for further improving the unmixing
performance. Specifically, two properties of hyperspectral data
are explored in general. First, the abundance matrix has spar-
sity owing that the distribution of each endmember is sparse.
Consequently, numerous works are developed by imposing
sparsity regularizer, such as single sparsity [9], collaborative
sparsity [10], and spatial group sparsity [11]. Second, each row
of abundance matrix should be piecewise smoothness due to
the spatial correlation among the neighboring pixels. Under
this assumption, Yang er al. [12] used a graph regularizer
to preserve the structural information. In [13], hypergraph
regularizer was exploited to capture the similarity among the
spatial nearby pixels. Moreover, by considering the spatial
information and the sparsity, He er al. [14] proposed a total
variation regularized reweighted sparse NMF (TV-RSNMF)
algorithm.

In this letter, we propose a correntropy-based autoencoder-
like NMF (CANMF) with TV (CANMF-TV) method to
address the problem of hyperspectral unmixing. Our main con-
tributions are threefold: 1) an autoencoder-like NMF is firstly
exploited to unmix the mixed pixels, which is motivated by
the nonnegative symmetric encoder-decoder model originally
proposed by Sun et al. [15]. Although the reported NMF-based
unmixing methods can achieve satisfactory performance, these
algorithms only consider the reconstruction of the original data
from the abundances in an endmember space, i.e., decoder.
The autoencoder-like NMF architecture integrates decoder
and encoder together such that it can directly project the
original data into the endmember matrix to obtain the abun-
dance matrix. Different from the autoencoder-based unmixing
approaches such as [16], the autoencoder-like NMF does not
need to design or select an activation function. That is, it is
constructed in a linear way, which is consistent with the
assumption of LMM. Besides, our cost function is formed
to reduce the sum of residuals for decoder and encoder,
rather than to maximize the similarity between the input and
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output layers; 2) for improving the robustness of NMF, several
models have been reported based on a kind of metrics, e.g.,
Li-norm regularizer [17], L j-norm regularizer [18], and
correntropy-induced metric (CIM) [19], [20]. Among them,
CIM is effective to handle the data with the noise. Actually,
HSI inevitably suffers from noise. To mitigate its adverse
effect, CIM is introduced to construct a CANMF model; and
3) since more similar abundance values are often presented
among the adjacent pixels, the contextual dependence exist
in abundance matrix. Therefore, TV regularizer is further
imposed to promote the piecewise smoothness of abundances
for improving the unmixing performance. Finally, experi-
ments are conducted to testify the validity of the proposed
CANMF-TV method on the synthetic and real hyperspectral
data sets.

II. METHODOLOGY

In this section, the proposed method is described in detail,
including the model formulation and its optimization.

A. Formulation of Proposed CANMF-TV Model

Given a nonnegative observation X with B bands and P
pixels, NMF aims at decomposing the matrix X into the
product of two nonnegative matrices, i.e., X ~ AS, here A €
RE*M and S € RM*F denote the spectral signatures with M
endmembers and their corresponding abundances, respectively.
Meanwhile, the abundance matrix S should satisfy both the
abundance nonnegative constraint (ANC) and the abundance
sum-to-one constraint (ASC), i.e., Sy, > 0 and Em Smp =1,
where m =1,2,...,. M and p=1,2,..., P

The NMF unmixing is mainly based on reconstructing a
network, namely decoder in autoencoder, while lacking an
encoder that transforms the observation data into the cor-
responding endmember space, thus not having the desirable
unmixing performance. To address this issue, by following
the idea of Sun er al. [15], here we make the first attempt to
exploit the autoencoder- like NMF for hyperspectral unmixing.
Generally, the acquired HSI is inevitably degraded by the
noise. In order to improve the robustness of the model,
a correntropy-based robust measure is introduced to construct
the CANMF model, whose cost function is designed as

. 2
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(S—ATX)
mp
Z Xp 20.22
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st.ST1yy=1p, A>0, S>0 (1)

where the first term represents the error for decoder, the sec-
ond term is the error for encoder, Xp, is an element in the
bth row, pth column of matrix X, (-)T denotes the transpose
operation to a matrix, 1y is column vector of all ones with
M elements, o1 and o> denote the bandwidth of the Gaussian
kernel. a is a tradeoff parameter to control the contribution of
the encoder term. When o = 0, the model (1) is degraded into
the basic correntropy-based NMF. The symmetry of model (1)
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together with the ANC can promote indirectly the sparsity of
abundance matrix.

In view of the fact that stronger spatial information is
an important aspect of HSI, which can further improve the
unmixing performance by effectively utilizing such informa-
tion. Specifically, a TV regularization is integrated into the
model (1) to obtain abundance maps with piecewise smooth-
ness. Therefore, we require to minimize the following cost
function:

Zexp{
S — T 2
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(X - AS);, }

201
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st.ST1y =1p, A>0,S>0 )
where 4 is a regularized parameter, and we have defined
M
ISllaTv = > IIFS™ v 3)
m=1

where S™ represents the mth row of the matrix S, and F
denotes the reshape operation from a vector with P pixels to
a matrix with u x o. For a gray-level image Y of size u X v,
the isotropic TV [21] is defined as
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B. Optimization

The model (2) is nonconvex when optimizing all variables
at the same time. Therefore, the gradient descent (GD)-based
method is adopted to alternately update the underlying vari-
ables. First, an auxiliary variable U is introduced into the
model (2) and equality constraint 8”1y = 1p is absorbed
into the cost function, that is,
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in which || -2 is /2-norm. The augmented Lagrangian function
of the above equation is
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where || - || is the Frobenius norm of the matrix, D, ¥, and
I' are the Lagrange multipliers in matrix format, and J and u
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are the penalty parameters. In this case, optimizing problem
(6) is split into three subproblems, each of which is solved
separately as follows.
1) Update Rule for A: To find the optimal endmember
matrix, the partial derivative for (6) with respect to A is

C [ (AS-X)]
oA [Kl © 012 } S
T
(ATX —8)
+aX |:K2®72:| +¥ (7
p)
with
K| = exp {_ X —AS) Oz(X —AS) } 8a)
20{
AT AT
K> = exp {—(S A X) ®2(S A X)} (8b)
20;

where © denotes the elementwise multiplication. Thus,
by using Karush-Kuhn-Tucker (KKT) condition A ©
¥ = 0 and setting 6C/0A = 0, update rule for A is
derived as

A—A0{(Kio(X/s7))S" +aX(K2 0 (S/07))" }
o {[Ki o (AS/at)]s
+aX[K: 0 (ATX/03)]"} )
where @ denotes the elementwise division.

2) Update Rule for S: For abundance matrix, the partial
derivative for (6) with respect to S is expressed as
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Similarly, update rule for S is given as
S < S0 {AT (K © (X/o?)) +a[K: © (AX/0?)]
+uU+d1y1p}
@{AT [K] © (AS/U%)} +a(K2 © (S/azz))
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3) Update Rules for U: In addition, the auxiliary variable
U can be updated by
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The optimization of (12) can be split into M subprob-
lems, and each subproblem is to solve
A
U" = argmin — | FU"||pv
UH’I ﬂ

2
(13)
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here, U™ denotes the mth row of matrix U. In this letter,
generic proximal algorithm presented in [21] is adopted

to solve the problem (13).

Algorithm 1 Proposed CANMF-TV Algorithm
Input: Observation matrix X.
Number of endmembers M.
Parameters a, A.
Initialize: A and S by VCA and FCLS, U=0,D =0,
u=0.01, p = 1.1, umax = 1000, Trax = 200,
e=1073,0; =1, and o, = 10.

Repeat
Calculate K| and K by (8a) and (8b).
Update A by (9).
Recalculate K; and K> by (8a) and (8b).
Update S by (11).
Update U by (13).
Update D by D <~ D + u(S — U).
Update u by ¢ = min(p i, timax)-

until |S — Ul < e.

Output: optimal solutions A and S.

The optimization process for the CANMF-TV model is
summarized in Algorithm 1.

III. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, the performance of the proposed method
is evaluated by using synthetic and real hyperspectral data
sets. The CANMF-TV is compared with untied denoising
autoencoder with sparsity (uDAS) [16], L1,2-RNMF [18], and
L1/2-NMF [5], where VCA-FCLS is used for initialization
and the results are obtained over 10 runs for each method so
as to make a reliable comparison. Moreover, all experiments
are conducted under the environment of MATLAB R2015b
software and computer configuration Intel Core i5 CPU at
2.80 GHz and 8.00 GB RAM. Spectral angle distance (SAD)
and root-mean-square error (RMSE) are respectively utilized
to endmembers and abundances for quantitative assessment,
which can be referred to [5].

A. Synthetic Data Experiments

In order to obtain a synthetic data, we first choose
six spectral signatures (i.e., Annite WS660, Illite IMt-1.a,
Limonite HS41.3, Meionite WS701, Muscovite GDS108,
and Olivine HS285.4B) from the United States Geo-
logical Survey (USGS) spectral library, which comprises
nearly 500 typical minerals and is available online at
http://speclab.cr.usgs.gov/spectral.lib06. Following the gener-
ation process described in [9], the synthetic data is created
with a size of 64 x 64 pixels and 224 bands changed from
0.4 to 2.5 um. Besides, the synthetic data is contaminated by
zero-mean Gaussian noise to be more realistic. The noise level
can be described by signal-to-noise ratio (SNR).

1) Experiment 1 (Parameter Analysis): First, our proposed
method is tested in terms of different values of o and A,
which are tuned in the range {0, 0.01, 0.02, 0.05, 0.1, 0.2} and
{le-4, 1e-3,0.01, 0.02,0.05, 0.1,0.2, 0.5, 1}, respectively. In
this experiment, the Gaussian noise is added into the synthetic
data with SNR = 40 dB. The results yielded by CANMF-TV
when a and 1 vary are shown in Fig. 1. Overall, the proposed
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Fig. 1. Performance of CANMF-TV with respect to parameters a and 4 in
terms of (a) SAD and (b) RMSE.
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Fig. 2. Comparison of (a) SAD and (b) RMSE for different methods versus
the Gaussian noise levels.
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Fig. 3. Convergence curves of CANMEF-TV on the synthetic data set.

method performs good for the above varied values of a and
A. It can be found that the optimal performance is achieved at
o = 0.1 and 2 = 0.5. The performance is improved gradually
as the o increases, but deteriorated when a is larger than 0.1.
That is, the CANMF-TV performs better than that with a = 0,
showing the effectiveness of encoder. In contrast, both SAD
and RMSE values decrease obviously when /A is increased to
0.5. This reveals that it is significant to incorporate the TV
regularizer.

2) Experiment 2 (Robustness Analysis to Noise): To ver-
ify the robustness to noise contamination of our method,
we assign SNR € {10, 20, 30,40} (dB). Fig. 2(a) illustrates
the average SAD values along with standard deviation under
different noise levels for each method, and Fig. 2(b) gives
the corresponding RMSE results. As can be seen, all methods
yield smaller SAD and RMSE values under lower Gaussian
noise levels. Nevertheless, CANMF-TV obtains better overall
unmixing performance than other considered methods, indi-
cating its significant advantage.

3) Experiment 3 (Convergence Observation and Running
Time): In order to demonstrate the convergence of CANMF-
TV, Fig. 3 gives the convergence curves of the proposed
method on the synthetic data with four Gaussian noise levels,
i.e., 10, 20, 30, and 40 dB. From Fig. 3, as the number of
iterations increases, all curves are monotonically decreasing
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Fig. 4. Comparison of the USGS library spectra (green solid line) with
the endmember signatures estimated by CANMFE-TV (red dashed line) on the
AVIRIS Cuprite data set. (a) #1. (b) #2. (c) #3. (d) #4. (e) #5. (f) #6. (g) #7.
(h) #8. (i) #9. (j) #10. (k) #11. (1) #12.

and approach convergence. In addition, we also investigate the
average running time of ten times on synthetic data with 30 dB
for CANMF-TV, uDAS, L;/,2-RNMF, and L;,2-NMF, which
are 29.12, 6.05, 22.94, and 2.05 s, respectively. Although
more running time is required, our method is implemented still
in second as other compared methods, which is acceptable for
small-scale data. Besides, for the much larger data, the graphic
processing unit (GPU) parallel computing technique can be
adopted to shorten the computational time significantly.

B. Real Data Experiments

Here, the proposed CANMF-TV method is applied to unmix
a real hyperspectral image. Thus, experiments are conducted
on the AVIRIS Cuprite data set. It consists of 250 x 191
pixels and remains 188 bands after removing several low
SNR bands. This data set is extensively used in hyperspectral
research and 12 minerals are generally considered, includ-
ing “Alunite GDS82 Na82 (#1),” “Andradite WS487 (#2),”
“Buddingtonite GDS85 D-206 (#3),” “Chalcedony CU91-6A
(#4),” “Kaolin/Smect H89-FR-5 30K (#5),” “Kaolin/Smect
KLF508 85%K (#6),” “Kaolinite KGa-2 (#7),” “Montmoril-
lonite + Illi CM37 (#8),” “Muscovite IL107 (#9),” “Non-
tronite NG-1.a (#10),” “Pyrope WS474 (#11),” and “Sphene
HS189.3B (#12).”

Fig. 4 depicts the comparison of the reference signa-
tures collected in USGS library with the estimated ones
by CANMEF-TV. Obviously, the estimated spectra of each
endmember is in accordance with the library one, which
confirms that the proposed method is effective to address the
unmixing problem. In Fig. 5, we present the abundance maps
produced by our proposed method. Furthermore, the SAD
results are listed in Table I. From Table I, we can find that all
methods achieve satisfactory results for several minerals, such
as #2, #8, and #12. Furthermore, our proposed method obtains
the minimum value in most cases, especially the average
value. Therefore, the proposed CANMF-TV outperforms other
methods over comparison.

Authorized licensed use limited to: Wuhan University. Downloaded on October 03,2020 at 12:49:18 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

FENG et al.: CANMF-TV FOR HYPERSPECTRAL UNMIXING

G

@

Fig. 5. Fractional abundance maps estimated by CANMF-TV on the AVIRIS
Cuprite data set. (a) #1. (b) #2. (c) #3. (d) #4. (e) #5. (f) #6. (g) #7. (h) #8.
(i) #9. () #10. (k) #11. (1) #12.

TABLE I

PERFORMANCE ABOUT SAD ALONG WITH STANDARD DEVIATION ON
THE AVIRIS CUPRITE DATA SET FOR DIFFERENT METHODS.
BOLDFACED DENOTES THE BEST RESULTS
UNDER EACH CONDITION

CANMF-TV uDAS Lyi/5-RNMF | L /5-NMF
#1 | 0.105642.10% | 0.122041.27% | 0.08912.04% | 0.1340-£6.29%
#2 | 0.076320.88% | 0.093942.93% | 0.0832+2.14% | 0.0731£1.66%
#3 | 0.075241.80% | 0.113340.95% | 0.1009+£2.48% | 0.1032-:3.20%
#4 | 0.137842.68% | 0.13494+2.40% | 0.15001.59% | 0.1504-£1.53%
#5 | 0.086043.93% | 0.071142.47% | 0.0699+1.39% | 0.1004+3.83%
#6 | 0.109043.99% | 0.115244.11% | 0.10913.34% | 0.1163-3.78%
#7 | 0.123941.84% | 0.132241.06% | 0.130043.62% | 0.1520+5.67%
#8 | 0.055321.15% | 0.050240.80% | 0.0528+1.07% | 0.0583-1.19%
#9 | 0.087841.43% | 0.133242.22% | 0.121244.11% | 0.1045+2.59%
#10 | 0.132641.21% | 0.1374+1.49% | 0.1292+1.10% | 0.1261--1.34%
#11 | 0.088343.05% | 0.0768+1.35% | 0.0993+4.47% | 0.1134£2.55%
#12 | 0.064040.84% | 0.0595+0.78% | 0.0829+2.00% | 0.0680-1.69%
Mean | 0.0951-£0.52% | 0.10330.35% | 0.101540.51% | 0.1083+0.72%

IV. CONCLUSION

In this letter, a novel CANMF-TV method has been pro-
posed for hyperspectral unmixing. It not only considers the
reconstruction of the original data from the abundances in
endmember space, but also projects directly the original
data into the endmember matrix to obtain the abundance
matrix. Meanwhile, the CIM measure is adopted to handle
noise effectively. Moreover, considering that more similar
abundance values are often presented among the adjacent
pixels, TV regularizer is further incorporated to promote
the piecewise smoothness of abundances for improving the
unmixing performance. Comparing with the existing uDAS,

L1/2-RNMF, and L1/2-NMF, the experimental results validate
that the superiority of the proposed CANME-TV algorithm.
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